Cross-reactivity virtual profiling of the human kinome by X-react(KIN): a chemical systems biology approach.

نویسندگان

  • Michal Brylinski
  • Jeffrey Skolnick
چکیده

Many drug candidates fail in clinical development due to their insufficient selectivity that may cause undesired side effects. Therefore, modern drug discovery is routinely supported by computational techniques, which can identify alternate molecular targets with a significant potential for cross-reactivity. In particular, the development of highly selective kinase inhibitors is complicated by the strong conservation of the ATP-binding site across the kinase family. In this paper, we describe X-React(KIN), a new machine learning approach that extends the modeling and virtual screening of individual protein kinases to a system level in order to construct a cross-reactivity virtual profile for the human kinome. To maximize the coverage of the kinome, X-React(KIN) relies solely on the predicted target structures and employs state-of-the-art modeling techniques. Benchmark tests carried out against available selectivity data from high-throughput kinase profiling experiments demonstrate that, for almost 70% of the inhibitors, their alternate molecular targets can be effectively identified in the human kinome with a high (>0.5) sensitivity at the expense of a relatively low false positive rate (<0.5). Furthermore, in a case study, we demonstrate how X-React(KIN) can support the development of selective inhibitors by optimizing the selection of kinase targets for small-scale counter-screen experiments. The constructed cross-reactivity profiles for the human kinome are freely available to the academic community at http://cssb.biology.gatech.edu/kinomelhm/ .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production and Characterization of Murine Monoclonal Antibodies Recognizing Conformational and Linear Epitopes Localized on Human IgA2 Molecules

Background: There are two subclasses of human IgA (IgA1 and IgA2) that differ in antigenic properties and in chemical composition. The constant domains of α1 and α2 heavy chains have >95% sequence homology though major structural differences exist in the hinge region. Quantitation of IgA subclass levels depends on the availability of monoclonal antibodies (MAbs) specific for conserved conformat...

متن کامل

Kinome-wide Activity Modeling from Diverse Public High-Quality Data Sets

Large corpora of kinase small molecule inhibitor data are accessible to public sector research from thousands of journal article and patent publications. These data have been generated employing a wide variety of assay methodologies and experimental procedures by numerous laboratories. Here we ask the question how applicable these heterogeneous data sets are to predict kinase activities and whi...

متن کامل

Comprehensive Structural and Functional Characterization of the Human Kinome by Protein Structure Modeling and Ligand Virtual Screening

The growing interest in the identification of kinase inhibitors, promising therapeutics in the treatment of many diseases, has created a demand for the structural characterization of the entire human kinome. At the outset of the drug development process, the lead-finding stage, approaches that enrich the screening library with bioactive compounds are needed. Here, protein structure based method...

متن کامل

Exploring sequence-structure relationships in the tyrosine kinome space: functional classification of the binding specificity mechanisms for cancer therapeutics

MOTIVATION Evolutionary and structural conservation patterns shared by more than 500 of identified protein kinases have led to complex sequence-structure relationships of cross-reactivity for kinase inhibitors. Understanding the molecular basis of binding specificity for protein kinases family, which is the central problem in discovery of cancer therapeutics, remains challenging as the inhibito...

متن کامل

Protein Profiling of the Secretome of FcεRI Activated RBL-2H3.1 Cells

Background: Secretory proteins of IgE receptor activated mast cells and basophils play a pivotal role in the generation of immediate and long term immune responses in allergy and type I hypersensitivity. Objective: The present study aims to generate a 2-D map and profile of proteins secreted from a high secretory variant of the rat basophilic leukemia cell line, RBL-2H3.1, which in view of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmaceutics

دوره 7 6  شماره 

صفحات  -

تاریخ انتشار 2010